All Issue

2019 Vol.6, Issue 3 Preview Page

September 2019. pp. 171-177
Abstract


References
1 

Behmann, J., Steinrücken, J. and Plümer, L. 2014. Detection of early plant stress responses in hyperspectral images. Journal of Photogrammetry and Remote Sensing 93: 98-111.

10.1016/j.isprsjprs.2014.03.016
2 

Choi, J.W., Hong, C.S., Shin, K.Y., Lee, J.U., Kim, J.A., Cho, Y.C. and Yu, S.J. 2018 Comparative analysis of ADCP flow measurement according to river bed material. Ecology and Resilient Infrastructure 5: 156-162. (in Korean)

3 

Dierssen, H.M., Chlus, A. and Russell, B. 2015. Hyperspectral discrimination of floating mats of sea grass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing. Remote sensing of environment 167: 247-258.

10.1016/j.rse.2015.01.027
4 

Goetz, A.F.H. 1991. Imaging spectrometry for studying earth, air, fire and water. EARSeL Advances in Remote Sensing 1: 3-15.

5 

Haest, M., Cudahy, T., Rodger, A., Laukamp, C., Martens, E. and Caccetta, M. 2013. Unmixing the effects of vegetation in airborne hyperspectral mineral maps over the Rocklea Dome iron-rich palaeochannel system (Western Australia). Remote Sensing of Environment 129: 17-31.

10.1016/j.rse.2012.10.011
6 

Heo, A., Choi, S., Lee, J.H., Kim, T. and Park, D.J. 2010. Optical system design and image processing for hyperspectral imaging systems. Journal of the Korea Institute of Military Science and Technology 13: 328-335. (in Korean)

7 

Kim, S.H., Lee, K.S., Ma, J.R. and Kook, M.J. 2015. Current status of hyperspectral remote sensing: principle, data processing techniques, and applications. Korean journal of remote sensing 21: 341-369. (in Korean)

8 

Kodikara, G.R., Woldai, T., Van Ruitenbeek, F.J., Kuria, Z., Van der Meer, F., Shepherd, K.D. and Van Hummel, G.J. 2012. Hyperspectral remote sensing of evaporate minerals and associated sediments in Lake Magadi area, Kenya. International Journal of Applied Earth Observation and Geoinformation 14: 22-32.

10.1016/j.jag.2011.08.009
9 

Landgrebe, D. 2002. Hyperspectral image data analysis. IEEE Signal Processing Magazine 35: 17-28.

10.1109/79.974718
10 

Lausch, A., Heurich, M., Gordalla, D., Dobner, H.J., Gwillym-Margianto, S. and Salbach, C. 2013. Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. Forest Ecology and Management 308: 76-89.

10.1016/j.foreco.2013.07.043
11 

Lee, K.H. and Lee, S.H. 2012. Monitoring of floating green algae using ocean color satellite remote sensing. Journal of the Korean Association of Geographic Information Studies 15: 137-147. (in Korean)

10.11108/kagis.2012.15.3.137
12 

Li, Q.S., Wong, F.K.K. and Fung, T. 2017. Assessing the utility of UAV-borne hyperspectral image and photogrammetry derived 3D data for wetland species distribution quick mapping. Remote Sensing and Spatial Information Sciences XLII-2: 209-215.

10.5194/isprs-archives-XLII-2-W6-209-2017
13 

Mhanolakis, D., Marden, D. and Shaw, G. 2003. Hyperspectral image processing for automatic target detection applications. Lincoln Laboratory Journal 14: 79-116.

14 

Mhanolakis, D. and Shaw, G. 2002. Detection algorithms for hyperspectral imaging applications. IEEE Signal Processing Magazine 35: 29-43.

10.1109/79.974724
15 

Park, H.L. and Choi, J.W. 2017. Accuracy evaluation of supervised classification by using morphological attribute profiles and additional band of hyperspectral imagery. Journal of the Korean Society for Geo-Spatial Information Science 25: 9-17. (in Korean)

10.7319/kogsis.2017.25.1.009
16 

Park, Y.J., Jang, H.J., Kim, Y.S., Baik, K.H. and Lee, H.S. 2014. A research on the applicability of water quality analysis using the hyperspectral sensor. Journal of the Korean Society for Environmental Analysis 17: 113-125. (in Korean)

17 

Seo, J.J. 2017. The Study on land cover classification of hyperspectral image using decision tree method. Master's thesis, Chonbuk University, Chonju. (in Korean)

18 

Shaw, G.A. and Burke, H.K. 2003. Spectral imaging for remote sensing. Lincoln Laboratory Journal 14: 3-28.

19 

Shin, J.I. and Lee K.S. 2011. Development of target detection algorithm using spectral pattern observed from hyperspectral imagery. Journal of the Korea Institute of Military Science and Technology 14: 1073-1080. (in Korean)

10.9766/KIMST.2011.14.6.1073
20 

Stratoulias, D., Balzter, H., Zlinszky, A. and Toth, V.R. 2014. Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, filed spectroscopy and hyperspectral airborne imagery. Remote Sensing of Environment 157: 72-84.

10.1016/j.rse.2014.05.021
21 

Van der Meer, F. 2003. Bayesian inversion of imaging spectrometer data using a fuzzy geological outcrop model. International Journal of remote sensing 24: 4301-4310.

10.1080/0143116021000047929
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 6
  • No :3
  • Pages :171-177
  • Received Date :2019. 09. 24
  • Revised Date :2019. 09. 26
  • Accepted Date : 2019. 09. 26