All Issue

2020 Vol.7, Issue 4 Preview Page

Original Article

December 2020. pp. 327-335
Abstract
References
1
Arrighi, C., Alcèrreca-Huerta, J.C., Oumeraci, H., and Castelli, F. 2015. Drag and lift contribution to the incipient motion of partly submerged flooded vehicles. Journal of Fluids and Structures 57: 170-184. 10.1016/j.jfluidstructs.2015.06.010
2
Arrighi, C., Oumeraci, H., and Castelli, F. 2017. Hydrodynamics of pedestrians’ instability in floodwaters. Hydrology and Earth System Sciences 21: 515-531. 10.5194/hess-21-515-2017
3
Bae, H.B. and Kwon, O.S. 2020. Untact face recognition system based on super-resolution in low-resolution images. Journal of Korea Multimedia Society 23: 412-420. (in Korean)
4
Beven, K.J. and Kirkby, M.J. 1979. A physically based variable contributing area model of basin hydrology. Hydrological Sciences Journal 24: 43-69. 10.1080/02626667909491834
5
Chang, L.C., Shen, H.Y., and Chang, F.J. 2014. Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. Journal of Hydrology 519: 476-489. 10.1016/j.jhydrol.2014.07.036
6
Cho, W.H., Han, K.Y., and Ahn, K.H. 2010. Flood risk mapping with FLUMEN model application. Journal of Korea Society of Civil Engineering 30: 169-177. (in Korean)
7
Chung, C.H., Chiang, Y.M., and Chang, F.J. 2012. A spatial neural fuzzy network for estimating pan evaporation at ungauged sites. Hydrology and Earth System Sciences 255: 255-266. 10.5194/hess-16-255-2012
8
DeLong, E.R., DeLong, D.M., and Clarke-Pearson, D.L. 1988. Comparing the areas under two or more correlated receiver operating characteristic. Biometrics 44: 837-845. 10.2307/25315953203132
9
Ji, M.H. and Cho, H.J. 2017. Analysis of changes of flood inundation depth and area according to channel migration and river improvement using HEC-GeoRAS. Journal of Korea Water Resources Association 50: 315-324. (in Korean) 10.3741/JKWRA.2017.50.5.315
10
Jung, M.K., Kim, J.G., Uranchimeg, S., and Kwon, H.H. 2020. The probabilistic estimation of inundation region using a multiple logistic regression. Journal of Korea Water Resources Association 53: 121-129. (in Korean)
11
Kim, H.I., Keum, H.J., and Han, K.Y. 2019. Real-time urban inundation prediction combining hydraulic and probabilistic methods. Water 11: 293-311. 10.3390/w11020293
12
Kim, T.H., Han, K.Y., and Park, J.H. 2016. New flood hazard mapping using runoff mechanism on Gamcheon watershed. Journal of Korea Society of Civil Engineering 36: 1011-1021. (in Korean) 10.12652/Ksce.2016.36.6.1011
13
Lagadec, L.R., Patrice, P., Braud, I., Charzelle, B., Moulin, L., Dehotin, J., and Breil, P. 2016. Description and evaluation of a surface runoff susceptibility mapping method. Journal of Hydrology 541: 405-509. 10.1016/j.jhydrol.2016.05.049
14
Lee, J.Y., Han, K.Y., and Kim, H.I. 2019. Mapping technique for flood vulnerable area using surface runoff mechanism. Journal of the Korean Association of Geographic Information Studies 22: 181-196. (in Korean)
15
Lee, K.S., Lee, D.E., Jung, S.H., and Lee, G.H. 2018. Analysis of large-scale flood inundation area suing optimal topographic factors. Journal of Korea Water Resources Association 51: 481-490. (in Korean)
16
Lee, S.M., Park, K.D., and Kim, I.K. 2020. Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong river (focusing on water quality and quantity factors). Journal of Korean Society of Water and Wastewater 34: 277-288. (in Korean) 10.11001/jksww.2020.34.4.277
17
Li, X., Yan, D., Wang, K., Weng, B. Qin, T., and Liu, S. 2019. Flood risk assessment of global watersheds based on multiple machine learning models. Water 2019: 1654-1672. 10.3390/w11081654
18
Moore, I.D., Grason, R.B., and Ladson, A.R. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes 5: 3-30. 10.1002/hyp.3360050103
19
Oh, M.K., Lee, D.R., Kwon, H.H., and Kim, D.K. 2016. Development of flood inundation area GIS database for Samsung-1 drainage sector, Seoul, Korea. Journal of Korea Water Resources Association 49: 981-993. (in Korean) 10.3741/JKWRA.2016.49.12.981
20
Rizeei, H.M., Pradhan, B., and Saharkhiz, M.A. 2019. An integrated fluvial and flash pluvial model using 2D high-resolution sub-grid and particle swarm optimization-based random forest approaches in GIS. Complex and Intelligent Systems 5: 283-302. 10.1007/s40747-018-0078-8
21
Seoul Metropolitan City. 2016. Comprehensive plans for the reduction of damage from storm and flood. (in Korean)
22
Simundic, A.M. 2012. Diagnostic accuracy-part1, Basic concepts: sensitivity and specificity, ROC analysis, STARD statement. Point of Care: The Journal of Near-Patient Testing & Technology 11: 6-8. 10.1097/POC.0b013e318246a5d6
23
Wang, Z. Lai, C., Chen, X., Yang, B., Zhao, S., and Bai, X. 2015. Flood hazard risk assessment model based on random forest. Journal of Hydrology 527: 1130-1141. 10.1016/j.jhydrol.2015.06.008
24
Ying, G.S., Maguire, M., Quinn, G., Kulp, M.T., Cyert, L., and Vision in Preschoolers Study Group. 2011. ROC analysis of the accuracy of Noncycloplegic Retinoscopy, Retinomax Autorefractor, and SureSight Vision Screener for preschool vision screening. Investigative Ophthalmology and Visual Science 52: 9658-9664. 10.1167/iovs.11-855922125281PMC3341123
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 7
  • No :4
  • Pages :327-335
  • Received Date :2020. 11. 24
  • Revised Date :2020. 12. 04
  • Accepted Date : 2020. 12. 04