All Issue

2018 Vol.5, Issue 3 Preview Page
September 2018. pp. 156-162
본 연구는 하상재료에 따른 ADCP의 측정 적합성을 평가하기 위해 하상 재료가 다른 자갈 하상과 모래 하상인 지점에서 ADCP의 유속, 수심 및 유량 자료를 ADV의 측정 결과와 비교 분석하였다. 연구결과 자갈 하상과 모래 하상에서의 ADV와 ADCP를 이용한 유속 분포와 수심 측정 자료는 비슷하게 나타났다. 유량측정 결과 자갈 하상에서 평균 3.5 - 4.8%, 모래 하상에서 평균 0.02 - 3.2%의 상대오차 범위를 나타내어 USGS에서 제시한 평균 오차 5%의 범위보다 작아 신뢰가 높은 결과인 것을 알 수 있었다. 이러한 결과는 향후 ADCP의 하천 적용성에 대한 기초자료로 활용될 수 있으며 ADCP의 불확도 평가에 중요한 자료로 이용될 것으로 판단된다.
This research aimed at analyzing comparison results between in gravel and sand bed with respect to the detailed Acoustic Doppler Current Profiler (ADCP) measurement in a velocity, depth, and flow rate data based on Acoustic Doppler Velocimeter (ADV) measurement result. Conclusionally, similar results were shown for gravel and sand bed in velocity, depth and flow rate data using ADV and ADCP measurement. The results of the flow rate show a relative error mean of 3.5 - 4.8% in the gravel bed and 0.02 - 3.2% in the sand bed, which is better performance than the mean error of 5% suggested by United States Geological Survey (USGS). The results can be used as a basis data for the measurement of ADCP and potentially able to be utilized for the more detailed uncertainty analysis of ADCP flow rate measurement.
  1. Adler, M. and Nicodemus, U. 2001. A new computer model for evaluation of data from acoustic doppler current profiler. Physics and Chemistry of the Earth(C) 26(10-12): 711-715.10.1016/S1464-1917(01)95014-7
  2. Brierley, A.S., Brandon, M.A., and Watkins, J.L. 1998. An assessment of the utility of an acoustic doppler current profiler for biomass estimation. Deep Sea Research Part I: Oceanographic Research Papers 45(9): 1555-1573.10.1029/JC095iC03p03189
  3. Geyer, W.R. and Signell, R. 1990. Measurements of tidal flow around a headland with a shipboard acoustic doppler current profiler. Journal of Geophysical Research: Oceans 95(C3): 3189-3197.10.1061/(ASCE)0733-9429(1989)115:7(925)
  4. Gordon, R.L. 1989. Acoustic measurement of river discharge. Journal of Hydraulic Engineering 115(7): 925-936.10.5322/JESI.2013.22.2.251
  5. Ji, J.Y., Park, S.Y., Lee, G.W., Park, G.M., Hwang, S.H., Kim, D.H., and Lee, Y.J. 2013. Analysis and comparison of flow rate measurements using various discharge measuring instrument and ADCP. Journal of Environmental Science International 22(2): 251-257. (in Korean)10.3741/JKWRA.2008.41.6.575
  6. Kim, C.W., Lee, M.H., Yoo, D.H., and Jung, S.W. 2008. Discharge computation in natural rivers using Chiu’s velocity distribution and estimation of maximum velocity. Journal of Korea Water Resources Association 41(6): 575-585.
  7. Kim, D. 2012. Assessment of longitudinal dispersion coefficients using acoustic doppler current profilers in large river. Journal of Hydro-Environment Research 6(1): 29-39.10.1016/j.jher.2011.06.001
  8. Kim, E.S., and Choi, H.I. 2009. Verification and application of velocity measurement using price meter and ADCP. Journal of The Korean Society of Hazard Mitigation 9(3): 101-106. (in Korean)
  9. Kim, J.M., Kim, D.S., Son, G.S., and Kim, S.J. 2015. Accuracy analysis of velocity and water depth measurement in the straight channel using ADCP. Journal of Korea Water Resources Association 48(5): 367-377. (in Korean)10.3741/JKWRA.2015.48.5.367
  10. Lee, C.J., Kim, W., Kim, C.Y., and Kim, D.G. 2005. Velocity and discharge measurement using ADCP. Journal of Korea Water Resources Association 38(10): 811-824. (in Korean)10.3741/JKWRA.2005.38.10.811
  11. Lee, J.H., Lee, S.H., Jung, S.W., and Kim, T.W. 2010. Experimental comparison and analysis of measurement results using various flow meters. Journal of Korean Wetlands Society 12(1): 95-103. (in Korean)
  12. Lu, Y., and Lueck, R.G. 1999. Using a broadband ADCP in a tidal channel. Part II: Turbulence. Journal of Atmospheric and Oceanic Technology 16(11): 1568-1579.10.1175/1520-0426(1999)016<1556:UABAIA>2.0.CO;210.1175/1520-0426(1999)016<1568:UABAIA>2.0.CO;2
  13. Measuring Discharge with Flowtracker Acoustic Doppler Velocimeters, 2015.
  14. Nystrom, E.A., Rehmann, C.R., and Oberg, K.A. 2007. Evaluation of mean velocity and turbulence measurements with ADCPs. Journal of Hydraulic Engineering 113(12): 1310-1318.10.1061/(ASCE)0733-9429(2007)133:12(1310)
  15. Reichel, G., and Nachtnebel, H.P. 1994. Suspended sediment monitoring in a fluvial environment: Advantages and limitations applying an acoustic doppler current profiler. Water Research 28(4): 751-761.10.1016/0043-1354(94)90083-3
  16. Riversurveyor S5/M9 System Manual, 2016.
  17. Simpson, M. 2001. Discharge measurement using a broad-band acoustic Doppler current profiler (p. 123). Reston: US Department of the interior, US Geological Survey.
  18. Stacey, M.T., Monismith, S.G., and Burau, J.R. 1999. Observations of turbulence in a partially stratified estuary. Journal of Physical Oceanography 29(8): 1950-1970.10.1175/1520-0485(1999)029<1950:OOTIAP>2.0.CO;2
  19. Yorke, T.H., and Oberg, K.A. 2002. Measuring river velocity and discharge with acoustic doppler profilers. Flow Measurement and Instrumentation 13(5-6): 191-195.10.1016/S0955-5986(02)00051-1
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 5
  • No :3
  • Pages :156-162
  • Received Date :2018. 09. 03
  • Accepted Date : 2018. 09. 21