All Issue

2018 Vol.5, Issue 3 Preview Page
September 2018. pp. 189-198
Abstract
기후 변화는 21세기에 인류가 맞이한 가장 중요한 문제 중에 하나이다. 탄소 배출은 이러한 기후 변화의 가장 핵심 원인으로 지목 된다. 토양은 관리 방법에 따라서 탄소의 저장원이 되기도 하지만 큰 배출원이 될 수도 있다. 기온의 변화는 농경지 토양에서 배출되는 온실가스의 양을 크게 변화시킬 수 있을 뿐만 아니라 작물의 생산량을 위한 농법 변화에도 영향을 미치기 때문에 기후 변화에 따른 온실가스 배출 변화는 두 가지 요인의 상호작용을 고려할 필요가 있다. 본 연구에서는 남한의 논에서의 온실가스 배출은 2011년부터 2100년까지 RCP 8.5 시나리오의 기상 변화에 따라서 모의하였다. 농법의 변화로는 다양한 논의 담수 기법이 적용되었다. 기존의 담수 기법으로는 기후변화가 진행됨에 따라서 온실가스 배출이 급격하게 상승하는 것을 확인할 수 있었고, 간단관수가 이러한 온실가스 배출을 크게 감소시킴을 확인하였다. 미래의 농법이 작물의 생산량을 최대화시키는 방향으로 변화한다고 가정하였을 때 기후 변화에 따라서 많은 농지가 관행 농법 보다 간단관수가 시행되었을 때 수확량이 상승하게 되었고, 이러한 기후변화의 적응을 고려하였을 때는 기후 변화에 따라서 온실가스 배출이 감소함을 확인하였다.
In 21th century, climate change is one of the fundamental issue. Greenhouses gases are pointed as the main cause of climate change. Soil play a vital role of carbon sink and also can be a huge source of greenhouse gases defense on the management. Flux of greenhouse gases is not the only factor can be changed by climate change. Climate change can alter proper management. Temperature change will modify crop planting and harvesting date. Other management skills like fertilizer, manure, irrigation, tillage can also be changed with climate change. In this study, greenhouse gases emission in rice paddy in South Korea is simulated with DNDC model from 2011 - 2100 years. Climate for future is simulated with RCP 8.5 scenario for understanding the effect of climate change to greenhouse gases emission. Various rice paddy flooding techniques were applied to find proper management for future management. With conventional flooding technique, climate change increase greenhouse gases emission highly. Marginal flooding can decrease large amount of greenhouse gases emission and even it still increases with climate change, it has the smallest increasing ratio. If we suppose the flooding technique will change for best grain yield, dominant flooding technique will be different from conventional flooding to marginal flooding. The management change will reduce greenhouse gases emission. The result of study shows the possibility to increase greenhouse gases emission with climate change and climate change adaptation can show apposite result compared without the adaptation.
References
  1. Abdalla, M., Wattenbach, M., Smith, P., Ambus, P., Jones, M., and Williams, M. 2009. Application of the DNDC model to predict emissions of N2O from Irish agriculture. Geoderma 151(3-4): 327-337.10.1016/j.geoderma.2009.04.021
  2. Berestovskaya, Y.Y., Rusanov, I.I., Vasil’eva, L.V., and Pimenov, N.V. 2005. The processes of methane production and oxidation in the soils of the Russian Arctic tundra. Microbiology 74(2): 221-229.10.1007/s11021-005-0055-2
  3. Chapman, S.J., Kanda, K., Tsuruta, H., and Minami, K. 1996. Influence of temperature and oxygen availability on the flux of methane and carbon-dioxide from wetlands - a comparison of feat and paddy soils. Soil Science and Plant Nutrition 42(June 2014): 269-277.
  4. Chapman, S.J., Kanda, K.I., Tsuruta, H., and Minami, K. 1996. Influence of temperature and oxygen availability on the flux of volatile sulphur compounds from wetlands: A comparison of peat and paddy soils. Soil Science and Plant Nutrition 42(2): 279-288.
  5. Cha-Un, N., Chidthaisong, A., and Towprayoon, S. 2017. Using the DNDC model to predict methane emissions from crop-rice rotation systems. Research Journal of Chemistry and Environment 21(3): 36-46.
  6. Furukawa, Y., Inubushi, K., and Furukawa, Y. 2004. Effect of application of iron materials on methane and nitrous oxide emissions from two types of paddy soils. Soil Science and Plant Nutrition 50(6): 917-924.10.1080/00380768.2004.10408554
  7. Gilhespy, S.L., Anthony, S., Cardenas, L., Chadwick, D., del Prado, A., Li, C., Misselbrook, T., Rees, R.M., Salas, W., Sanz-Cobena, A., Smith, P., Tilston, E.L., Topp, C.F.E., Vetter, S., and Yeluripati, J.B. 2014. First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecological Modelling 292: 51-62.10.1016/j.ecolmodel.2014.09.004
  8. Giltrap, D.L., Li, C., and Saggar, S. 2010. DNDC: A process-based model of greenhouse gas fluxes from agricultural soils. Agriculture, Ecosystems and Environment 136(3-4): 292-300.10.1016/j.agee.2009.06.014
  9. Gregorich, E., Janzen, H.H., Helgason, B., and Ellert, B. 2015. Nitrogenous gas emissions from soils and greenhouse gas effects. Advances in Agronomy 132 39-74.10.1016/bs.agron.2015.02.004
  10. Hwang, W., Kim, Y., Min, H., Kim, J., Cho, K., and Hyun, S. 2017. Evaluating the applicability of the DNDC model for estimation of CO2 emissions from the paddy field in Korea. Korean Journal of Environmental Biology 35(1): 13-20.10.11626/KJEB.2017.35.1.013
  11. IPCC. 2013. Working group I contribution to the IPCC fifth assessment report climate change 2013: The physical science basis. http://www.climatechange2013. org/report/. Accessed 12. Feb. 2018.
  12. Kammann, C., Hepp, S., Lenhart, K., and Müller, C. 2009. Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil. Soil Biology and Biochemistry 41(3): 622-629.10.1016/j.soilbio.2008.12.025
  13. Kasimir, A., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J., and Oenema, O. 1997. Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management 13(s4): 245-250.10.1111/j.1475-2743.1997.tb00595.x
  14. Kasimir-Klemedtsson, A., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J., and Oenema, O. 1997. Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management 13(4): 245-250.10.1111/j.1475-2743.1997.tb00595.x
  15. Kasimir-Klemedtsson Å, L Klemedtsson, K Berglund, P Martikainen, J Silvola and O Oenema. 1997. Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management 13(s4): 245-250.10.1111/j.1475-2743.1997.tb00595.x
  16. Li, K., Liu, R., and Sun, C. 2016. A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews 54: 857-865.10.1016/j.rser.2015.10.103
  17. Minamikawa, K. and Sakai, N. 2005. The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan. Agriculture, Ecosystems and Environment 107(4): 397-407.10.1016/j.agee.2004.08.006
  18. Minamikawa, K., Fumoto, T., Itoh, M., Hayano, M., Sudo, S., and Yagi, K. 2014. Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: A long-term simulation using the DNDC-Rice model. Biology and Fertility of Soils 50(6): 879-889.10.1007/s00374-014-0909-8
  19. Munoz, C., Paulino, L., Monreal, C., and Zagal, E. 2010. Greenhouse gas (CO2 and N2O) emissions from soils: a review. Chilean Journal of Agricultural Research 70(3): 485-497.10.4067/S0718-58392010000300016
  20. Schütz, H., Seiler, W., and Conrad, R. 1990. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry 11(Conrad 1989): 77-95.
  21. Segers, R. 1998. Methane production and methane consumption--a review of processes underlying wetland methane fluxes [Review]. Biogeochem. 41 23-51.10.1023/A:1005929032764
  22. Towprayoon, S., Smakgahn, K., and Poonkaew, S. 2005. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 59(11): 1547-1556.10.1016/j.chemosphere.2005.02.00915894043
  23. Xu, S., Shi, X., Zhao, Y., Yu, D., Li, C., Wang, S., Tan M., and Sun, W. 2011. Carbon sequestration potential of recommended management practices for paddy soils of China, 1980-2050. Geoderma 166(1): 206-213.10.1016/j.geoderma.2011.08.002
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 5
  • No :3
  • Pages :189-198
  • Received Date :2018. 09. 17
  • Accepted Date : 2018. 09. 19