All Issue

2020 Vol.7, Issue 4 Preview Page

Original Article

December 2020. pp. 336-344
Abstract
References
1
Bocchiola, D., Rulli, M.C., and Rosso, R. 2006. Flume experiments on wood entrainment in rivers. Advances in Water Resources 29(8): 1182-1195. 10.1016/j.advwatres.2005.09.006
2
De Cicco, P.N., Paris, E., Solari, L., and Ruiz-Villanueva, V. 2020. Bridge pier shape influence on wood accumulation: Outcomes from flume experiments and numerical modeling. Journal of Flood Risk Management 13(2): 1-16. 10.1111/jfr3.12599
3
KBS news, last modified Sep 11, 2020, accessed Nov 18, 2020, https://news.kbs.co.kr/news/view.do?ncd=5001887.
4
Kimura, I. and Kitanozo, K. 2020. Effects of the driftwood Richardson number and applicability of a 3D-2D model to heavy wood jamming around obstacles. Environmental Fluid Mechanics 20: 503-525. 10.1007/s10652-019-09709-6
5
Kimura, I., Uijttewaal, W.S.J., Hosoda, T., and Ali, M.S. 2009. URANS computations of shallow grid turbulence. Journal of Hydraulic Engineering 135(2): 118-131. 10.1061/(ASCE)0733-9429(2009)135:2(118)
6
Koshizuka, S. 1997. Computational fluid dynamics. Baifukan Co. Ltd., Tokyo.
7
Lagasse, P.F., Clopper, P.E., Zevenbergen, L.W., Spitz, W.J., and Girard, L.G. 2010. Effects of debris on bridge pier scour (NCHRP Report No. 653). Washington, DC: Transportation Research Record. 10.1061/41147(392)85
8
Laursen, E.M. and Toch, A. 1956. Scour around bridge piers and abutments. Iowa Highway Research Board, Bulletin No. 4.
9
Lyn, D.A., Cooper, T., Yi, Y.K., Sinha, R.N., and Rao, A.R. 2003. Debris accumulation at bridge crossings, laboratory and field studies. TRB Subject Code: 25-1 (Publication No. FHWA/IN/JTRP-2003/10, SPR-2478). 10.5703/1288284313171PMC201128
10
Melville, B.W. and Dongol, D.M. 1992. Bridge pier scour with debris accumulation. Journal of Hydraulic Engineering 188(9): 1306-1310. 10.1061/(ASCE)0733-9429(1992)118:9(1306)
11
Panici, D. and Almeida, G.A.M. 2020. Influence of pier geometry and debris characteristics on wood debris accumulations at bridge piers. Journal of Hydraulic Engineering 146(6): 04020041. 10.1061/(ASCE)HY.1943-7900.0001757
12
Ruiz-Villanueva, V., Bladé E, Sánchez-Juny, M., Marti-Cardona, B., Díez-Herrero, A., and Bodoque, J.M. 2014. Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics 16(5): 1077-1096. 10.2166/hydro.2014.026
13
Schalko, I., Schmocker, L., Weitbrecht, V., and Boes, R.M. 2020. Laboratory study on wood accumulation probability at bridge piers. Journal of Hydraulic Research 58(4): 566-581. 10.1080/00221686.2019.1625820
14
Shrestha, B.B. 2009. Study on mitigation measures against debris flow disasters with driftwood, Thesis or Dissertation, Kyoto University.
15
Ushijima, S., Makino, O., and Yoshikawa, N. 2009. 3D numerical prediction for transportation and entrapment of driftwood with T-type solid model. Journal of Hydroscience and Hydraulic Engineering, JSCE 27(1): 11-21.
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 7
  • No :4
  • Pages :336-344
  • Received Date :2020. 11. 25
  • Revised Date :2020. 12. 05
  • Accepted Date : 2020. 12. 05