September 2018. pp. 125-133
Abstract


References
1 

Ausilio, E. and Conte, E. 2005. Influence of groundwater on the bearing capacity of shallow foundations. Canadian Geotechnical Journal 42: 663-672.

10.1139/t04-084
2 

Daliakopoulos, I.N., Coulibaly, P., and Tsanis I.K. 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology 309: 229-240.

10.1016/j.jhydrol.2004.12.001
3 

Daliakopoulos, I.N., Coulibaly, P., and Tsanis I.K. 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology 309: 229-240.

10.1177/030913330102500104
4 

Geotechnical Information Database System (GIDS), Ground Investigation Tap. http://surveycp.seoul.go.kr

5 

Kim, I. and Lee, J. 2018a. Influencing factor analysis on groundwater level fluctuation near river. Ecology and Resilient Infrastructure 5(2): 72-81 (in Korean)

6 

Kim, I. and Lee, J. 2018b. Prediction model for spatial and temporal variation of groundwater level based on river stage.” Journal of Hydrologic Engineering 23(6): 0601 8002-1-8.

7 

Makridakis, S., Wheelwright, S.C., Hyndman, R.J. 2008. Forecasting methods and applications, 3rd edn. Wiley, Singapore, 656 pp.

8 

Nourani, V. and Mousavi, S. 2016. Spatiotemporal groundwater level modeling using hybrid artificial intelligence- meshless method. Journal of Hydrology 536: 10-25.

10.1016/j.jhydrol.2016.02.030
9 

Park, D., Kim, I., Kim, G., and Lee, J. (2017). “Groundwater effect factors for the load-carrying behavior of footings from hydraulic chamber load tests.” Geotechnical Testing Journal 30(3): 440-451.

10.1520/GTJ20160078
10 

Park, D., Kim, I., Kim, G., and Lee, J. (2017). “Groundwater effect factors for the load-carrying behavior of footings from hydraulic chamber load tests.” Geotechnical Testing Journal 30(3): 440-451.

10.1007/s10040-013-1029-5
11 

Seo, Y., Kim, S., Kisi, O., and Singh, V.P. 2015. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. Journal of Hydrology 520: 224-243.

10.1016/j.jhydrol.2014.11.050
12 

Shahriar, M. A., Sivakugan, N., Das, B. M., Urquhart, A., and Tapiolas, M. 2014. Water table correction factors for settlements of shallow foundations in granular soils. International Journal of Geomechanics, 10.1061/(ASCE) GM.1943-5622.0000391, 1-7.

13 

Trichakis, I.C., Nikolos, I.K., and Karatzas, G.P. 2011. Artificial neural network (ANN) based modeling for Karstic groundwater level simulation. Water Resources Management 25: 1143-1152.

10.1007/s11269-010-9628-6
14 

Trichakis, I.C., Nikolos, I.K., and Karatzas, G.P. 2011. Artificial neural network (ANN) based modeling for Karstic groundwater level simulation. Water Resources Management 25: 1143-1152.

10.1007/s11625-006-0015-4
Information
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 5
  • No :3
  • Pages :125-133
  • Received Date :2018. 09. 11
  • Revised Date :2018. 09. 18
  • Accepted Date : 2018. 09. 18