All Issue

2020 Vol.7, Issue 4 Preview Page

Original Article

December 2020. pp. 345-352
Choi, S.-U. and Cheong, S. 2006. Prediction of local scour around bridge piers using artificial neural networks. Journal of the American Water Resources Association 42(2): 487-494. 10.1111/j.1752-1688.2006.tb03852.x
Choi, S.Y. and Han, K.Y. 2012. Comparison of different multiple linear regression models for real-time flood stage forecasting. Journal of Korea Water Resources Association 32(1B): 9-20.
Choi, S.Y., Han, K.Y., and Choi, H.G. 2011. Comparison and analysis of data-derived stage prediction models. Journal of Wetlands Research 13(3): 547-565.
Daliakopoulos, I.N., Coulibaly, P., and Tsanis, I.K. 2005. Groundwater level forecasting using artificial neural networks. Journal of hydrology 309(1-4): 229-240. 10.1016/j.jhydrol.2004.12.001
Govindaraju, R.S. 2000. Artificial neural networks in hydrology Ⅱ: hydrologic applications. Journal of Hydrologic Engineering 5(2): 124-137. 10.1061/(ASCE)1084-0699(2000)5:2(124)
Huynh, N.P. and Nguyen, D.A.K. 2003. Flood forecasting for the upper reach of the Red River Basin, North Vietnam,
Jun, H.D. and Lee, J.H. 2013. A methodology for flood forecasting and warning based on the characteristic of observed water levels between upstream and downstream. Journal of Korean Society of Hazard Mitigation 12(6): 367-374. 10.9798/KOSHAM.2013.13.6.367
Jun, K.W. and Lee, H.J. 2011. A study on water level forecasting by heavy rainfall using neural network. Korea Water Resources Association annual meeting, p. 291.
Jung, S.H. and Choi, S.-U. 2015. Prediction of composite suitability index for physical habitat simulations using the ANFIS method. Applied Soft Computing 34: 502-512. 10.1016/j.asoc.2015.05.028
Jung, S.H., Lee, D.E., and Lee, K.S. 2018. Prediction of river water level using deep-learning open library. Journal of Korean Society of Hazard Mitigation 18(1): 1-11. 10.9798/KOSHAM.2018.18.1.1
Kim, S.W. 2005. Reliability analysis of flood stage forecasting using neural networks model - I. Model development and application. Journal of the Korean Society of Civil Engineers B 25(6B): 473-482.
Kumar, M., Raghuwanshi, N.S., Singh, R., Wallender, W.W., and Pruitt, W.O. 2002. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering 128(4): 224-233. 10.1061/(ASCE)0733-9437(2002)128:4(224)
Liong, S.Y., Lim, W.H., and Paudyal, G.N. 2000. River stage forecasting in bangladesh: neural network approach. Journal of Computing in Civil Engineering 14(1): 1-8. 10.1061/(ASCE)0887-3801(2000)14:1(1)
Ministry of the Interior and Safety. 2018. Methodology development for the estimation and prediction of direct and indirect damages/losses from flood and wind disasters.
Mohammed, M.A., Abd Ghani, M.K., Arunkumar, N.A., Hamed, R.I., Mostafa, S.A., Abdullah, M.K., and Burhanuddin, M.A. 2020. Decision support system for nasopharyngeal carcinoma discrimination from endoscopic images using artificial neural network. The Journal of Supercomputing 76(2): 1086-1104. 10.1007/s11227-018-2587-z
Thirumalaiah, K. 1998. River stage forecasting using artificial neural networks. Journal of Hydrologic Engineering 3(1): 26-32. 10.1061/(ASCE)1084-0699(1998)3:1(26)
Willis, M.J., Montague, G.A., Di Massimo, C., Tham, M.T., and Morris, A.J. 1992. Artificial neural networks in process estimation and control. Automatica 28(6): 1181-1187. 10.1016/0005-1098(92)90059-O
Yeo, W.K., Seo, Y.M., Lee, S.Y., and Jee, H.K. 2010. Study on water stage prediction using hybrid model of artificial neural network and genetic algorithm. Journal of Korea Water Resources Association 43(8): 721-731. 10.3741/JKWRA.2010.43.8.721
  • Publisher :Korean Society of Ecology and Infrastructure Engineering
  • Publisher(Ko) :응용생태공학회
  • Journal Title :Ecology and Resilient Infrastructure
  • Journal Title(Ko) :응용생태공학회 논문집
  • Volume : 7
  • No :4
  • Pages :345-352
  • Received Date :2020. 10. 18
  • Revised Date :2020. 11. 09
  • Accepted Date : 2020. 11. 10